Законы термодинамики и термодинамические величины (функции) системы часть 2

Подытожим определение понятия энтальпии. Так же, как и внутренняя энергия, энтальпия характеризует состояние вещества, но включает энергию, расходуемую на преодоление внешнего давления за ее расширение, то есть на работу расширения. Как и внутренняя энергия, энтальпия определяется состоянием системы и не зависит от пути перехода из одного состояния в другое. В системах, что у них в процессе перехода из одного состояния в другое изменение объема незначительна (твердые тела, жидкости), разница между и будет также незначительным (величина будет незначительной по сравнению с). Открытие первого закона термодинамики — преобразования тепла в работу, к которому ученые приближались течение жизни нескольких поколений, завершилось трудами Мейера и Джоуля. Открылись новые горизонты познания природы, но именно этот закон одновременно и лишил человечество фантастической мечты — изобрести средство получить без затраты энергии. С того времени патентные службы всех стран мира отказались регистрировать изобретения «вечного двигателя — perpetuum mobile». Распрощавшись навсегда с такой мечтой, человечество задалось уже другим вопросом: как все тепло, которое поступает в систему, превратить в работу? Возможно ли это? Ответ дает второй закон термодинамики , честь открытия которого принадлежит французскому инженеру и ученому-физику С. Карно (1796 — 1832). Читать далее «Законы термодинамики и термодинамические величины (функции) системы часть 2»

Информационно-измерительная система давления газа в газопроводе часть 3

а) напряжение питания — + 5В; б) ток — 7 мА; в) диапазон входного напряжения — 0 ...+ 10В; г) входное сопротивление — 10 МОм; д) интегральная нелинейность — 1; е) дифференциальная нелинейность — 1; есть) тактовая частота — 2,5 МГц. Условное графическое обозначение АЦП AD7880 приведено на рисунке 3.5. Рисунок 3.5 — Условное графическое обозначение АЦП AD7880 Для обеспечения работы АЦП в режиме постоянного преобразования необходимо подключить к его входу CLKIN генератор прямоугольных импульсов на основе кварцевого резонатора , схема которого приведена на рисунке 3.6. При этом необходимо, чтобы частота кварцевого резонатора F было больше тактовой частоты АЦП FCLKIN. Рисунок 3.6 — Схема генератора Для усиления сигнала датчиков давления SLP и 26 PC SMT перед подачей их на вход АЦП используем операционный усилитель. Поскольку аналого-цифровой преобразователь работает в диапазоне от 0 до 10 В, то операционный усилитель будет обеспечивать усиление напряжения в этом диапазоне. Усиливать выходное напряжение датчика FP2000 нет необходимости, поскольку ее диапазон совпадает с диапазоном входного напряжения АЦП. Для решения такой задачи можно использовать современный быстродействующий заграничный операционный усилитель LM358. Технические характеристики операционного усилителя LM358 следующие: а) напряжение питания — от 2,5 до 7,0 В; б) ток покоя 0,8 мА; в) входное сопротивление 1000 МОм; г) класс точности: 0,06. Читать далее «Информационно-измерительная система давления газа в газопроводе часть 3»

Графическая модель работы участковой станции поездов

q 0 — количество отцепов в составе; m c — число вагонов в составе; Т с = А q 0 + Б m c = 0,41 16 + 0,32 50 = 22,56 мин. Технологический время на осаждения вагонов определяется по формуле: Т ос = 0,06 m c , мин Т ос = 0.06 50 = 3 мин. Технологический время на расформирование вагонов Т р = 22,56 + 3 = 25,56 26 мин. 3.2. Нормирование времени на окончание формирования составов различных категорий 3.2.1. Технологическое время на окончание формирования равно группового состава при накопленные вагонов на одном пути определяется по формуле: Т зф = Т ПТЭ + Т пойти , мин., где Т ПТЭ — это технологическое время на выполнение операций, д ' связанных с ра-новкой вагонов в составе согласно требованиями ПТЭ (несовпадение осей авто-зацепов, расстановка вагонов прикрытия); Т пойти — время на подтягивание вагонов со стороны вытяжной пути для ликвидации «окон» на пути сортировочного парка (мин .); Т ПТЭ рассчитывается по формуле: Т ПТЭ = В + Е m ф , мин., где В и Е-нормативные коэффициенты, величины которых зависят от среднего

5.100405.КП.26.3УПП2.10.03.01.ПО Изменить Арк. № докум Подпись Дата Нормирование маневровой работы Буква Лист Листов Студент Кулаксиз 22 38 Преподаватель Бугай И. М. МТЗТ






СТЦ получает информацию в виде телеграмм-натурного листа (ТГНЛ) на поезда через электронную вычислительную машину (ЭВМ), следующая проверка выполняется путем считывания номеров вагонов в прибывающих поездах во входной горловине парка приема и проверки данным ТГНЛ оператором СТЦ. Читать далее «Графическая модель работы участковой станции поездов»

Информационно-измерительная система давления газа в газопроводе часть 2

Итак, согласно таблице 1.1 значения качественного критерия для первого варианта реализации системы ; для второго варианта ; и для третьего . Итак, второй вариант реализации системы больше соответствует идеальной системе при избранных характеристиках для сравнения, а поскольку эти характеристики необходимо обеспечить в системе, разрабатываются, то для дальнейшей разработки выберем именно второй вариант реализации. 2. Разработка структурной схемы информационно-измерительной системы давления газа в газопроводе Каждый средство измерения является техническим средством определенной структуры. Степень сложности средства измерения определяется характером и количеством преобразований, необходимых для преобразования информативного параметра входного сигнала в информативный параметр выходного сигнала. Все эти промежуточные преобразования осуществляются преобразовательными элементами и основаны на определенных физических эффектах, которые обеспечивают своим сочетанием работу средства измерений. Структурной схеме измерительной цепи средства измерений называется схема, отражающая его основные функциональные части (структурные элементы), их назначение и взаимосвязи. Степень дифференциации структурной схемы на структурные элементы, изображаемых преимущественно прямоугольниками, определяется назначением схемы. Читать далее «Информационно-измерительная система давления газа в газопроводе часть 2»

Автоматизация модульной котельной часть 2

Проводим регенерацию катионита в следующей последовательности: 1. Разрыхлить катионит в фильтре, для чего записываем показатели счетчика воды; закрываем краны К2, КЗ, К4 и К6; открываем краны К1 и К5; устанавливаем переключатель режимов работы в положение «Р» (регенерация) и после прохождения через счетчик ЗО литров воды перевести его в положение «О» (выключено). 2. Заполняем катионитовые фильтры реагентом (10% раствором NaCI) в количестве 8 литров, для чего закрываем все краны откручиваем пробку фильтра и вставить воронку; открываем кран КС и через воронку непрерывно, чтобы не допустить обнажения катионита, доливаем реагент примерно в таком количестве, которое выливается из крана КС. В момент, когда закончится реагент, который добавляют, перекрываем кран КС и оставить его в фильтре на 60 минут; закручиваем пробку фильтра. 3. Промываем катионитовые фильтры от реагента, для чего записываем показатели счетчика воды; открываем краны КС, К4 и К6; устанавливаем переключатель режимов работы в положение «Р» (регенерация) и после прохождения через счетчик 100 литров воды переводим его в положение «О» (выключено), и закрываем краны КС, К4 и К6; открываем краны К1 и К5; устанавливаем переключатель режимов работы в положение «Р» (регенерация) и после прохождения через счетчик ЗО литров воды берем ее анализ и переводим переключатель режимов работы в положение «О» (выключено) и закрываем краны. регулировку реле давления согласно его паспорту на заданное давление в системе теплоснабжения. Читать далее «Автоматизация модульной котельной часть 2»

Методы повышения точности измерений

Методы повышения точности измерений План 1. Анализ погрешностей средств измерения 2. Метод стабилизации параметров статических характеристик 3. Метод структурной избыточности 4. Метод уменьшения случайной составляющей погрешности 5. Метод уменьшения систематической составляющей погрешности 6. Метод уменьшения случайной и систематической составляющих погрешностей 7. Структурные методы уменьшения мультипликативных и аддитивных погрешностей 1. Анализ погрешностей средств измерения В производственных условиях первичные измерительные преобразователи (датчики), системы дистанционных передач, измерительные приборы, регуляторы и другие средства эксплуатируются в сложных условиях, которые изменяются во времени. Это обусловлено тем, что контролируемый производственный процесс, как и сам технологический процесс, меняется в широких пределах. Изменение технологических параметров и условий внешней среды (температуры, давления, влажности, вибрации) значительно влияют на точномирни характеристики средств измерительной техники, на их статические и динамические характеристики. Каждый из влиятельных факторов, как правило, может быть измерен отдельно и учтен при получении результатов измерений, однако в производственных условиях эксплуатации все их учесть почти невозможно. Поэтому каждое средство измерения рядом с нормированной чувствительностью к измеряемой величины определенным образом реагирует на различные факторы, которые обусловливают повышение погрешности средств измерения. Читать далее «Методы повышения точности измерений»

Методы производства заготовок и деталей

Методы производства заготовок и деталей ПЛАН 1 Литейное производство. 1.1 Литейные сплавы и формовочные смеси. 1.2 Классификация литейных форм и технология их изготовления 1.3 керамика. 1.4 Специальные виды литья. 2 Обработка металлов давлением. 2.1 Теоретические сведения об обработке металлов давлением. 2.2 Основные виды обработки металлов давлением. 2.3 Новые методы обработки металлов давлением. 3 Сварка и пайки металлов. 3.1 Виды сварных соединений, их разновидности и применение. 3.2 Методы контроля качества сварных соединений. 3.3 Газовое и дуговая резка металлов и их применение. 3.4 Пайка металлов. 3.5 Основы технологии производства изделий из древесины, пластмасс, стекла, резины. 1.1. Литейные сплавы и формовочные смеси. Из сплавов для литья используют те, которые имеют высокие литейные свойства (ридинотекучисть, усадку, ликвацию). Основную массу чугунного литья изготавливают из серого и высокопрочного чугуна. Литейные свойства стали хуже, чем в чугунов. Для литья используют доэвтектоидных стали с содержанием 0,1-0,6% углерода и легированные стали с марганцем, кремнием, никелем, хромом, медью и др. С цветных сплавов в литейном производстве используют: кремниевые, алюминиево-железные, марганцево-оловянно-свинцовые латуни; алюминиевые, алюминиево-железо-свинцовые и фосфорные бронзы; силумины, сплавы магния с марганцем, алюминием и цинком. Смеси делятся на формовочные и стержневые. Читать далее «Методы производства заготовок и деталей»

Измерение работы выхода электронов методом кельвина

Министерство науки и образования Украины ДНЕПРОПЕТРОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Факультет физики, электроники и комп " Компьютерная систем Кафедра радиоэлектроники Курсовая работа НА ТЕМУ: «Измерение работы выхода электронов методом Кельвина» Днепропетровск 2009 Реферат В работе описаны, работа выхода электрона, основные принципы измерения работы выхода электрона. Отдельно сконцентрироваться на методе Кельвина. Содержание Введение 1.Работа выхода электронов 1.1Робота выхода электронов из металла 2. Методы измерения работы выхода электронов 2.1 Измерение работы выхода электронов по величине плотности тока термоэмиссия 2.2 Измерение работы выхода электронов с помощью явления фотоэффекта 2.3 Измерение работы выхода электронов через контактную разность потенциалов 2.4 Измерение работы выхода электронов методом динамического конденсатора 2.5Вимирювання работы выхода электронов методом статического конденсатора 2.6Вимирювання работы выхода электронов методом электронного пучка Андерсона 3.Измерение работы выхода электронов методом Кельвина Выводы Список использованных источников Введение Толчком к первым исследований работы выхода послужили две причины. Одна из них — острая потребность электровакуумной промышленности, быстро развивалась, в долговечных и эффективно работающих катодах. Читать далее «Измерение работы выхода электронов методом кельвина»

Графическая модель работы участковой станции поездов часть 5

Письмо 25 Изм. Письмо. № докум. По д п. Дата






Расчет технологического времени на перестановку состава с ПВП на вытяжную путь свожу в таблицу, где указываю наименование и время, которое затрачивается на каждый напиврейс. Таблица №3







Напиврейс Перемещение Длина напиврейсу г. Норматив
от до а в
Заезд локомотива резервом вытяжная путь ГС путь ПВП 350 + 50 = 400 1,32  —
Извлечение ГС пути ПВП вытяжная путь 400 + 50 15 = 1150 2,40 0,078
= 3,72 = 0,078

Т пер = 3,72 + 0,078 50 = 7,62 8 мин. Расчет технологического времени на перестановку сформированного состава с сортировочного парка в ПВП свожу в таблицу. Таблица №4







Напиврейс Перемещение Длина напиврейсу г. Норматив
от до а в
Заезд локомотива резервом вытяжная путь ГС путь ПВП 450 + 50 = 500 1,44  —
Извлечение ГС пути ПВП вытяжная путь 500 + 50 15 = 1250 2,56 0,082
Перестановка вытяжная путь ГС пути ПВП 1250 2,56 0,082
= 6,56 = 0,164
Т пер = 6,56 + 0,164 50 = 14,7615 мин. Расчет времени на перестановку маневрового состава с сортировочного парка на вытяжной район свожу в таблицу.
5.100405.КП.26.3УПП2.10.03.03.ПО Письмо 24
Изм. Письмо. № докум. Подп. Дата







числа розчепок (Р 0 ) в местах несовпадения продольных осей автосцепок. Т ПТЭ = В + Е m ф = 1,92 + 0,12 50 = 7,92 мин. Продолжительность подтягивание вагонов составляет Т пойти = 0,08 m ф , мин. Т пойти = 0,08 50 = 4 мин. Читать далее «Графическая модель работы участковой станции поездов часть 5»